Summary Report
 Minor Research Project

Synthesis of Pyrazolo[3, 4-b][1, 8]naphthyridines and study of their photophysical properties

Pyrazolo pyridines and pyrazolo naphthyridines compounds emerge as an attractive class of nitrogen heterocycles for the researchers due to their antimicrobial and fluorescence properties. These compounds also showed the pharmaceutical properties of anticancer agents, anticonvulsant agents, antiproliferative agents, CNS depressants and anti-inflammatory agents. In recent years scientist showed an increasing interest in synthesizing compounds having good fluorescent properties and good quantum yield. Literature study showed that pyrazolo naphthyridines derivatives showed significant fluorescence properties and can be used for synthesis of many electroluminescence devises. In this work we have synthesized new pyrazolo naphthyridine compounds and studied for their photophysical properties.

I) Synthesis of N^{\prime}-[3-aryl-4-formyl-1-phenyl-1H-pyrazol-5-yl]-N,N-

 dimethylmethanimidamide 2Vilsmeier-Haack formylation of 1,3 disubstituted 5 -amino pyrazole with DMF and POCl_{3} furnished compound $\mathbf{2}$ in good yield. (Scheme-1).

Scheme-1

The IR spectrum of compound 2a showed bands at $1620 \mathrm{~cm}^{-1}$ for $\mathrm{N}=\mathrm{CH}$ stretching. Absorption bands at $2720 \mathrm{~cm}^{-1}$ and $1710 \mathrm{~cm}^{-1}$ confirmed the presence of aldehyde group. The ${ }^{1} \mathrm{H}$ NMR spectrum showed two singlets at $\delta 2.87$ and at $\delta 2.98$ for two CH_{3} groups. Signal for aldehyde proton appear at $\delta 9.53$ while all other aromatic protons appear in between $\delta 7.32$ to $\delta 8.50$.

II) Synthesis of N^{\prime}-[3-aryl-4-(2-cyanoethenyl)-1-phenyl-1H-pyrazol-5-yl|-N,Ndimethylmethanimidamide 3

Reaction of N'-[3-aryl-4-formyl-1-phenyl-1 H-pyrazol-5-yl]-N,Ndimethylmethanimidamide 2 with diethyl cyanomethyl phosphonate using NaOMe or NaOEt in dichloromethane produce compound $\mathbf{3}$ in good yield.

Scheme-2

3	R
a	Cl
b	Br
c	CH_{3}

Compound 3a showed IR band at $2210 \mathrm{~cm}^{-1}$ which confirmed the presence of CN group. PMR spectrum showed two doublets one at $\delta 5.69$ and $\delta 7.24$ for two olefinic protons. HRMS spectrum showed $\mathrm{M}+1$ peak at 376.13 which confirmed the molecular mass of the compound 3a.

III) Synthesis of (2E)-3-[5-amino-3-aryl-1-phenyl-1H-pyrazol-4-yl]prop-2enenitrile 4

Compound 3 on refluxing with sodium hydroxide in ethanol furnished compound $\mathbf{4}$ in good yield. Compound $\mathbf{4}$ was characterized by spectral and analytical methods.

Scheme-3

4	R
a	Cl
b	Br
c	CH_{3}

IV) Synthesis of 3-aryl-1-phenyl-1H-pyrazolo[3,4-b]pyridin-6-amine 5

Compound 4 on heating with ZnCl_{2} or BiCl_{3} undergo cyclisation and furnished compound 5 in $60-70 \%$ yield. IR band at 3388 and $3338 \mathrm{~cm}^{-1}$ and PMR signal at $\delta 4.82$ confirmed the presence of NH_{2} group. $\mathrm{M}+1$ peak in HRMS at $m / z 301.14$ matched with the calculated molecular mass of compound $5 \mathbf{5 c}$.

Scheme-4

4

5

5	R
a	Cl
b	Br
c	CH_{3}

V) 3-Aryl- 5-methyl-1-phenyl-1,8-dihydro-7H-pyrazolo[3,4-

 b][1,8]naphthyridin-7-one 6Compound 4 was heated with ethyl acetoacetate at $150^{\circ} \mathrm{C}$ for 4 hrs , after cooling 4 ml concentrated sulfuric acid was added and resulting solution was heated at $110^{\circ} \mathrm{C}$ for one hour. Compound 5 showed IR bands at $3260 \mathrm{~cm}^{-1}$ (for NH) and $1668 \mathrm{~cm}^{-1}$ (for $\mathrm{C}=\mathrm{O}$). ${ }^{1} \mathrm{H}$ NMR spectrum showed NH singlet at $\delta 8.86$ and aromatic protons appear in between $\delta 6.36$ to $\delta 8.36$. HRMS showed M+1 peak at $387.10(\mathrm{~m} / \mathrm{z})$ which confirm the molecular mass of 6a

Scheme-5

5

Study of the Photophysical Properties of 3-Aryl-5-methyl-1-phenyl-1,8-dihydro- pyrazole $[3,4-b \mid[1,8]$ naphthyridin-7- one 6
Newly synthesized naphthyridine derivatives showed emission of blue light hence we decided to undertake the study of fluorescent properties. Different solvents were used to find out the effect of solvent on fluorescence. The absorption and emission spectra were studied by using quinine sulphate as reference standard and dichloromethane, methanol and acetonitrile as solvent.

Conclusion

We have developed an efficient method for synthesis of 3-Aryl- 5-methyl-1-phenyl-1,8-dihydro-7H-pyrazolo[3,4-b][1,8]naphthyridin-7-one. Results showed that fluorescence properties of newly synthesized naphthyridine derivatives greatly affect by solvent and substituent present at C3 position of pyrazole ring.

Dr. K.R. Labhade Principal Investigator

Dr. V. J. Medhane Pritheipal

Deolali Can*

