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Chapter 5 )
Nanostructure-based Colloidal Creztto
Suspension for Thermal Enhancement

for NEPCM

Suman S. Kahandal, Sandeep K. Jare, Yelim Kwon,
M. H. Ansari Abdul Wadood, Balasaheb P. Pagar, Anuradha B. Bhalerao,
Ji Man Kim, and Ravindra N. Bulakhe

1 Introduction

Due to industrialization, environmental pollution, and high cost of fossil fuels, renew-
able energy sources have drawn significant attention in recent years. There is an
immediate demand to identify alternative energy sources to nonrenewable sources
[1-3]. Energy source sustainability is a major issue for all scientists, engineers, and
researchers. In recent year’s diverse renewable energy sources, i.e., sun-powered
energies, wind attracted attention, but maximizing the use of present energy sources
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is equally important. Due to its limitless, unlimited supply and eco-friendly nature,
solar energy has drawn significant attention and is emerging as an ideal energy
source. Climate change and the operation of solar heating devices are major obsta-
cles to obtaining solar energy. Storage and optimization of current energy sources
is an important concern with the scarcity of current energy sources. Numerous
strategies exist to store renewable energy, including thermal energy storage (TES),
flywheels, batteries, compressed air, and pumped hydroelectricity. Thermal energy
storage systems are an efficient method of storing energy. These are divided into three
categories: thermochemical storage, latent heat storage, and sensible heat storage [4—
6]. TES is the storing of thermal energy for future use. The phase change material
(PCM) has been discovered to be an excellent candidate for thermal energy storage
in a variety of applications. Sensible heat storage, according to reports, has a lower
thermal energy storage density than latent heat storage [7, 8]. PCMs are classified
into three categories based on their physical states: solid-solid, liquid-gas, and solid-
liquid. During the phase transition process, PCMs absorb and release considerable
energy in solid-liquid states. Organic PCMs, inorganic PCMs, and eutectic PCMs
are the three types of solid—liquid. PCMs have greater heat storage capacity than
conventional heat storage. During the phase transition process, PCMs leakage can
be avoided by the encapsulation process.

Macro, micro, and Nano scale encapsulation are used for better thermal efficiency.
The thermal stability of macroscale and microscale is less compared to nanoscale
PCMs. Because of the reduction in the size of Nano-enhanced P.C.M.s (NEPCMs)
enables better thermal transport. It is reported that PCMs have a low thermal
conductivity, but they can be improved by adding nanostructures like nanoparticles,
nanotubes, and nanofibres, etc., in PCM material. Due to the reduction in viscosity
and easy fluid-flowing properties, better efficiency is obtained for colloidal suspen-
sions of NEPCMs [8—10]. Colloidal suspension is shaped by blending immaculate
PCMs and nanostructure fabric like nanoparticles, nanofibres, or nanotubes. Most of
the PCMs development is based on colloidal suspension due to its high TES, high
Thermal Conductivity, and free fluid flow characteristics. This chapter provides a
broad view of various types of NEPCMs, their thermophysical properties, and the
different uses of NEPCMs are discussed.

2 Nano Enhanced Phase Change Material (NEPCMs)

PCMs capture and release heat energy as they go through phase changes. This energy,
known as latent heat, can be absorbed, stored, and released in substantial quanti-
ties by PCMs as the material changes temperature. When PCMs are coupled with
nanostructured materials, their heat conductivity improves.
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2.1 AnlIdeal N.E.P.C.M.

Following are the characteristics of ideal NEPCMs.

(a) High thermal conductivity—transference of heat is a property of all materials.
Any PCM material with high conductivity indicates that heat is released or stored
within a short period of time. For effective thermal energy storage, a fast heat
transfer rate is essential.

(b) Suitable phase change temperature—As the phase change temperature should
be aligned with the operating temperature, the temperature at which heat can be
absorbed or released is critical. Temperature ranges have been found for paraffin
wax-based phase change materials (PCMs) [11].

(c) Higher latent heat—Latent heat is the energy that a substance assimilates or
releases when it undergoes a phase change in its physical state without changing
its temperature. More amount of latent heat is present in an ideal NEPCMs
material [12].

(d) Small volume change—It is always desirable to a very small amount of volume
change during the phase transition process to reduce complexity in PCMs
material [13].

(e) Low super cooling temperature—In any material with increased thermal
conductivity, better heat transfer takes place. For a good heat transfer, a low
super cooling temperature is needed. At higher super cooling temperatures, the
PCM will not solidify [13].

(f) Low cost—To reduce the total cost of processing, selected PCMs should be low
cost.

(g) Safe—Selected PCM should be safe to use and possess no harmful, flammable,
or corrosive qualities.

(h) High stability—There should not be any change occurring in PCM material
during its heating and cooling process. It must possess chemical stability [14].

(i) High thermal diffusivity—The ideal PCM should transfer heat rapidly.

2.2 Thermo-Physical Properties of Nano-Enhanced PCM

The different thermophysical properties of NEPCMs materials, such as thermal
conductivity, latent heat capacity, super cooling, density, and viscosity, are given
here.

2.2.1 Thermal Conductivity

Till today, different forms of nanomaterial were synthesized, like nanoparticles,
nanofibers, nanorods, nanosheets, nanotubes, etc. Because of high surface-to-volume
ratio of nanomaterials, it shows unique magnetic, electrical, and optical properties
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compared to bulk materials [15]. The thermal conductivity of PCM materials is very
low, which can be improved by mixing PCM with nanomaterials to create NEPCM
[16].

Thermal conductivity of NEPCMs is depicted in Fig. 1 and described as follows:

(a) Concentration: A sufficient amount of nanoparticles is required to generate a
good thermally conductive network and good heat transfer in PCM materials.

(b) Surfactant: To improve particle suspension in PCM, the addition of surfactant
is essential. Surfactants change the surface properties of the nanoparticles [17].
However, excessive surfactant use reduces thermal conductivity while raising
thermal resistance.

(c) Temperature: Conflicting results were obtained about the effect of temperature
on thermal conductivity. This suggests that the conductivity depends on the PCM
material type rather than temperature [18].

(d) Type of particle: Liquid NEPCMs have poorer thermal conductivity than their
solid counterparts.

(e) Shape of particle: Nanoparticles can be found in sphere, cube, and rod shapes.
Of the three shapes, the cubic shape has the largest surface area. In any case, the
process of producing cubic nanoparticles is expensive and laborious [18, 19].

2.2.2 Latent Heat Stability

Latent heat and sensible heat are two types of heat that are generated during the
cooling or heating process. The former heat causes no temperature change during
the heating/cooling process, whereas the latter exhibits temperature changes during
the heat transfer process. There are two types of latent heat: fusion latent heat and
vaporization latent heat. The latent heat of fusion is concerned with the transition from
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solid to liquid states or vice versa, whereas the latent heat of vaporization is concerned
with the transfer from liquid to gas states or vice versa. The latent heat of fusion is
taken into account since nano-enhanced phase change materials (NEPCMs) are used
in both solid and liquid states. NEPCMs have a significant amount of latent heat
resistance. The overall latent heat can be raised by altering the interaction between
the PCM and nanomaterials; however, excessive expansion of nanoparticles within
the PCM may lower the latent heat [20].

2.2.3 Super Cooling

Super cooling is the process in which material cools below the freezing point without
solidification or crystallization. It is also known as undercooling. In this process,
material temperature decreases below the freezing point without solidification. It is
an important parameter for the cooling process [21], and if the super cooling effect
1s high, it causes difficulty in releasing the stored heat.

2.2.4 Density

With an increase in the concentration of nanoparticles density of NEPCMs also
increases. When Low volume PCM is used, then high-density PCM is mostly
preferred [22].

2.2.5 Viscosity

The resistance of a liquid to changing shape or developing regions adjacent to each
other (flow restriction) is called viscosity. Expansion of nanoparticles makes liquid
flow more difficult. Thus, the enlargement of nanoparticles within PCM increases
viscosity [23].

2.3 Preparation Methods for NEPCM

To obtain homogenous dispersion of PCM and nanomaterials, proper mixing and
stabilization process are used during the synthesis of NEPCMs rather than mixing
nanoparticles directly into the base PCM. Methods such as One-step and two-step
are used for the preparation of NEPCMs. The primary nanomaterial is ready and then
sprinkled onto the base PCM material in a two-step strategy. At the same time, the
one-step strategy involves the generation and continuous scattering of nanomaterials
within the base PCM. The two-stage strategy is less expensive than the one-stage
one and is now widely used for constructing large-scale NEPCMs [24-26].
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2.3.1 One-Step Method

A one-step strategy involves creating nanomaterials and their permanent scattering
within the base PCM. This strategy does not require the nanomaterials to be dried,
mixed or stored in his PCM, resulting in lower particle agglomeration [27]. The
one-step method is useful only for small scale due to its high cost. NEPCMs of
different concentrations of Al,O3, TiO;, SiO, and ZnO were mixed with paraffin
wax and the mixture was mixed by magnetic stirring method to induce homogeneous
accumulation [28]. Using microwave and sonication methods, synthesized NEPCMs
of AI(NOj3)3-9H,0 and urea mixture were added to petroleum wax, and required
NEPCM were prepared [29].

2.3.2 Two-Step Method

In a two-step process, dry powder nanomaterials are first fabricated using various
mechanical and chemical methods such as sol-gel strategy, ball milling, and chemical
reduction. At this point, this powder was mixed with PCM using various methods,
such as magnetic stirring and homogeneous ultrasonic bath mixing. A two-step
strategy is used for the industrial production of NEPCMs materials. Aggregation
issues within the two-step strategy can be minimized by including various surfac-
tants that make a difference in lowering the surface tension between the liquid and
nanomaterials and stabilize the assembly. PCM nanocomposites were assembled
by mixing capric and palmitic acids into graphite nanosheets through a sonication
strategy [30]. Paraffin expanded perlite with graphene Nano platelets composite
formed in acetone by ultrasonic probe sonicator method [31]. A two-step strategy to
place NEPCMs of TiO,, CuO, and ZnO with lauric acid and stearic acid by sonica-
tion strategy was performed [32]. Made from palmitic acid and multi-walled carbon
nanotubes, NEPCM is shaped to enhance its thermal properties. Carbon nanotubes
were mixed with potassium hydroxide, and the resulting mixture was ball milled.
Then the mixture was diluted with water and proceeded for the drying process. The
composite was prepared by carbon nanotube with palmitic acid by sonication method
[33].

2.4 Applications of N.E.P.C.M.

The application part of NECPMs focused on two areas:
(1) Thermal Management

Numerical and exploratory studies on novel applications of NEPCM in buildings
are conducted to find the balance between thermal subsidence and energy use.
NEPCM has been found to save 22% of the energy used in heating and cooling
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processes while capturing and reducing CO, levels. It also helps to monitor the
thermal condition of the photovoltaic system [34-37].
(2) Thermal Storage

Thermal industrial systems can be entirely revolutionized by instantaneous, free,
clean thermal energy captured and stored by NEPCM and released on demand
through phase transitions. This energy will also benefit the environment and
provide high-quality energy, especially the use of solar energy storage, which
can produce outstanding results when paired with NEPCMs [38, 39]. Thermal
energy storage includes applications such as photovoltaic walls, solar control
panels, solar cookers, solar-based dryers, and solar-powered air heaters.

3 Classification of Nanostructure Based Enhanced PCM

In heat exchange devices, the use of PCM increases the huge TES capacity over a
wide temperature range. However, the low thermal conductivity of PCM limits its
application in such devices, as it requires both high capacity and high heat removal
rate. According to the Gibbs hypothesis, increasing temperature causes misalignment
of atoms in the lattice structure. This is due to the low thermal conductivity of PCM.
If the PCM contains nanostructured materials with good thermal conductivity, this
will reduce the void and nucleus misalignment, ultimately increasing the heat storage
capacity and heat release rate. This area focuses on improving thermal conductivity
with most types of nanostructures (nanoparticles, nanotubes, and nanofibers) based
on colloidal suspensions [40].

Figure 2 depicts the various forms of nanostructure-based enhanced PCMs like
nanoparticles, nanowires, and nanotubes.

3.1 Nanoparticle-Based Colloidal Suspensions

The introduction of nanoparticles in PCM directly corresponds to an increase
in thermal conductivity by reducing the voids in the crystal structure. Further,
nanoparticle-based colloidal suspensions, prepared by combining molten PCMs and
nanoparticles, show liquid-like properties. Colloidal suspensions based on nanopar-
ticles have been considered for their high thermal conductivity, heat retention, and
heat release rate. Therefore, current research on TES scaffolds focuses on preparing
PCM emulsions by finding suitable processing conditions [41].

These PCM emulsions are liquid-liquid mixtures of colloidal suspensions and
nanoparticles, such as KNOj3 liquid salt containing nanometer-sized oxide nanopar-
ticles of Al,O3 and SiO;. In colloidal suspension-based PCMs, latent heat changes
remarkably, while the melting point remains unchanged after the accumulation of
nanoparticles. Latent heat change of PCMs shows an increasing trend due to single
species of nanoparticles while decreasing trend is observed due to hydrophilic fumed
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mixing of nanoparticles. TES capacity of PCMs increases by 16% after the addition
of nanoparticles. Further, surfactant addition reduces super cooling effect in PCMs
and enhances thermal conductivity to solve two major issues with colloidal-based
PCMs [41].
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Fig. 2 Various forms of nanoenhanced PCMs

3.1.1 Various Methods of Preparation of a Colloidal-Based Suspension
of Nanoparticles

NEPCMs are stable and long-lasting suspensions with minor particle agglomera-
tion in the solid-liquid mixture and no chemical change. The one-step technique
and the two-step strategy are the two basic ways of synthesizing NEPCM. The
one-step procedure involves nanoparticle assembly and simultaneous scattering in
PCM. While in the two-step technique, pre-synthesized nanoparticles are dispersed
in PCM base using various methods like mixing, ultra-sonication, autoclave, absorp-
tion, vacuum impregnation, etc. In addition to the methods described above, mixing
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encapsulated PCM and nanoparticles into a liquid is a potential way to create
nanoparticle-based colloidal suspensions [42].

3.1.2 Properties of Colloidal Suspension of Nanoparticles

Based on the synthesis steps and methods, NEPCMs-based colloidal suspensions’
properties show variation. However, some of the general properties, such as thermal
conductivity, latent heat capacity and supercooling effect are further discussed.
The effect of the expansion of colloidal suspensions of nanoparticles in PCM on
thermophysical properties is also addressed.

(1

2)

3)

Thermal Conductivity: As discussed earlier and as depicted in Fig. 1, Various
components such as particle agglomeration, particle size, shape, surfactant,
and temperature play important roles in influencing the thermal conductivity
of nanoparticle-reinforced PCMs. The thermal conductivity of PCMs depends
more on the uniform distribution of the particles than on the nanomaterials
involved. Particle dispersion may be a function of van der Waals forces between
nanoparticles. These forces attract and stick nanoparticles together, causing
particle agglomeration. Enlarging the surfactant, which may be accomplished
by adding hydrophilic and lipophilic groups to long organic particles, prevents
the formation of clusters and makes a substantial contribution to the uniform
distribution of nanoparticles in PCM. A large surface area to volume ratio is
another factor that contributes to high heat conductivity. When the nanoparti-
cles’ size is reduced, the rate at which their thermal conductivity is increased is
proportionally increased. Having said that, it is also dependent on the tempera-
ture. It has been discovered that the thermal conductivity of paraffin wax in solid
form increases with rising temperature within temperatures that are between 25
and 50 degrees Celsius lower than its melting point. In contrast, an increase in
temperature results in a decrease in the thermal conductivity of the paraffin wax
that is contained in the TiO, nanoparticles [5, 6].

Latent Heat Capacity: High latent heat capacity is PCMs’ key property, while
low thermal conductivity is their major disadvantage. Foreign substances like
thermally conductive nanoparticles are embedded in PCMs to overcome this
lacuna to form NEPCMs. This process adversely affects the latent heat capacity
of NEPCMs. Hence, more research is focused on this direction to retain latent
heat along with raise in the thermal conductivity of NEPCMs [5, 6].

Super cooling: Latent heat dissipation in PCMs starts at a temperature below
solidifying temperature. As discussed earlier, the high super cooling effect
causes difficulties in releasing stored heat. The process of formation of NEPCMs
involves including external substances like nanoparticles in PCMs. This trig-
gers a crystallization process known as hetero nucleation that can reduce the
powerful effects of supercooling. Thus, nanoparticles, in such cases, function
as nucleation agents in the PCM [5, 6].
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Thermal conductivity, Latent heat, and super cooling effect are interdependent on
each other. When work is carried out to enhance one thermo-physical parameter’s
performance, another parameter gets affected adversely. To maintain all thermo-
physical properties simultaneously, NEPCMs must be utilized more than bare PCMs.
The effect of NEPCM can be enhanced by changing the shape of nanoparticles such
as nanotubes and nanofibers.

3.2 Nanotube-Based Colloidal Suspensions

Graphite and diamond are two common allotropes of carbon discovered before
the nineteenth century. In 1985, scientists discovered the third allotrope of carbon
containing sixty perfectly arranged carbon atoms, a major breakthrough to carbon
nanochemistry Carbon nanotubes are widely used in various fields such as elec-
tronics, aerospace, pharmaceuticals, fuel cells, sensors, and storage devices. They
can also be used in bio-medical, industrial, molecular, biological systems. Carbon
nanotube is a cylindrical form of graphene with a few nanometers in diameter. Single-
walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT)
are both different types of CNT with diameters 1 nm and 100 nm, respectively. By
rotating the graphene sheet just 30 degrees, the nanotubes that form it change from
armchair to zigzag and vice versa [43, 44].

(1) Preparation of SWCNT Dispersions: 8 mg of carbon material was added to an
aqueous phospholipid solution (0.8% w/w). The lipid concentration was main-
tained above 0.1 wt% of its basic micelle concentration (CMC) value. Ionic
quality was maintained at 10 mM using NaCl. Scatterers were sonicated with
a Branson-Bad sonicator for 4 h. As a control, SWCNTSs were dispersed in an
aqueous medium containing 10 mM NacCl and treated as previously described
[44]. A comprehensive presentation of the rationale for the production of an
aqueous C60 solution was given. Using colloidal surfactants, phospholipids,
or polyvinylpyrrolidine (PVP) as solubilizers and/or dispersants that have been
generated through chemical modification is one way to produce suspensions.
Particle dispersion in water is affected by three different factors: (i) repulsion
between particles caused by the zeta potential, (i1) steric hindrance from the
adsorption layer, and (iii) a decrease in hydrophobic bonding among particles.
Carbon nanotubes (CNTs) that are available for purchase on the market often
exhibit a poor rate of dispersion in solutions and do not possess well-defined,
chemically flexible groups that are amenable to modification. In agreement with
the findings of prior research, surfactants have the ability to modify the inter-
face between the particles and the suspension medium, thereby preventing the
particles from aggregating over the long term. In order to gain an understanding
of how surfactant molecules contribute to the dispersion of CNTs, 0.02 g of
CNTs were encapsulated in 0.1 g dm~ of dodecyl sulfate (SDS) solution and
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(2)

3)

4)

then sonicated to disperse the CNTs. This was done in order to gain this under-
standing. With the help of laboratory grade NaOH, the pH was brought up to
9. After that, the suspension was dried for a full day at a temperature of 140
degrees Celsius.

Preparation of MWCNT Dispersions: After adding the required amount
of 1-cyclohexyl-2-pyrrolidone (CHP) to water, a mixture of 1-cyclohexyl-2-
pyrrolidone (CHP) and water had been produced. Prior to this, the formula for
calculating the gravimetric concentration of water in CHP was X = [water]/
([C.H.P.] + [water]). CHP and water were combined, and then a predetermined
amount of multi-walled carbon nanotubes (MWCNT) were added to the mixture
in order to create a suspension consisting of CHP, water, and MWCNT. The
suspension had been sonicated using an ultrasonic disperser with a frequency
of 44 kHz and a power of 400 W. The suspension had been sonicated in a bath
of cold water in order to prevent it from getting too hot and thus ensure that the
temperature did not go higher than 313 K. The MWCNTs had been damaged by
the sonication process, despite the fact that it had helped to disperse knotted or
aggregated MWCNTs. In the experiments, each suspension had been sonicated
for ten minutes prior to being used, and the preparation was done right before
the experiment. An investigation was conducted on a number of samples, each
of which had an MWCNT concentration (C) ranging from 0.0 to 1.0 wt% and
a water concentration (X) ranging from 0 to 1[45].

Nanotube-Based PCM improves thermal energy storage: Thermal energy
storage, often known as TES, has the potential to become an important point
of reuse for several types of renewable energy, including solar energy. PCMs
are able to both store and utilize energy thanks to their ability to absorb
and then release heat to the surrounding environment as their physical state
changes from solid to liquid. To prevent PCM from spilling into the environ-
ment during the conversion process, PCM must be mixed. In general, there
are three scales of PCM mixing. H. Macroscale (>1 mm), Microscale (~pm),
Nanoscale (<1000 nm). As a result of unsatisfactory thermal stability and fairly
low thermal conductivity (TC), the capacity of macroscale PCM TES does
not satisfy the requirements of the power industry. In order to circumvent this
obstacle, innovative phase change materials (PCMs) with unexpectedly high
thermal stability and heat storage/release rates have been created.

The rationale behind the production of aqueous C60 suspensions has been
explained in some detail [46]. Using colloidal surfactants, phospholipids,
or polyvinylpyrrolidine (PVP) as solubilizers and/or dispersants is one way
to produce suspensions. Other options include polyvinylpyrrolidine (PVP)
acquired by the process of chemical alteration [47]. Consistent with previous
reports [48], surfactants can alter the interface between particles and suspension
media, preventing agglomeration over long periods of time. After adding 0.02 g
of carbon nanotubes to an aqueous solution containing 0.1 g of sodium dodecyl
sulfate (SDS), the mixture was sonicated to distribute the CNTs. The pH of
the solution has already been adjusted to 9 using NaOH of analytical grade.
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The suspension was recently dried at a temperature of 140 degrees Celsius for
twenty-four hours.

Platinum Green Chemicals Sdn manufactured petroleum-based multi-wall
CNTs and hydro-drilling fluids. Bhd., Malaysia, used as received. Hydrogenated
oils contain a mixture of straight and branched chain paraffins with carbon chain
lengths from C15 to C18, which are naturally formed as non-polar groups. At
80,000 x magnification, it can be seen that the CNT bundles with normal outer
spacing of 10-12 nm are trapped by only 10—12 nm. Traps can cause CNTs to
accumulate in the nanofluid if they are not consistently dispersed. The multi-
walled CNTs consist of a fixed inner width with numerous outer CNT layers with
atypical thickness of 4.7 nm. Within the range of 6—7 nm, the internal spacing of
multi-walled CNTs had been consistently observed. In order to make mixtures
of 1-Cyclohexyl-2-pyrrolidone (CHP) and water, the required amount of CHP
was first weighed out and then added to the water. Previously, the formula for
calculating the gravimetric concentration of water in C.H.P. was as follows: X
= [water]/([C.H.P.] 4+ [water]). The CHP and water mixture had the required
quantity of MWCNTs added to it so that it could be transformed into a suspen-
sion consisting of CHP, water, and MWCNTs. After that, the suspension was
sonicated with an ultrasonic disperser at a frequency of 44 kHz and a power
of 400 W so that it could be more evenly distributed. The suspension had been
sonicated in a bath of cold water to prevent it from becoming overheated and
ensure that the temperature did not go over 313 K. The heavily entangled or
aggregated MWCNT samples were easier to disperse thanks to sonication, but
the MWCNTs themselves were damaged as a result of the process. In the exper-
iments, each suspension had been sonicated for ten minutes prior to being used,
and the preparation was done right before the experiment. An investigation was
conducted on a number of samples, each of which had an MWCNT concen-
tration (C) ranging from 0.0 to 1.0 wt% and a water concentration (X) ranging
from O to 1 [45].

It had been determined that a mixture of double-walled alumogermanate
nanotubes, also known as Ge-DWINTSs and imogolite-like nanotubes (INTs),
should be produced. Ge-DWINT had been obtained through the use of a sol-
gel technique, much as Levard et al. had stated. The majority of the synthesis
had been carried out in a container made of PTFE by vigorously swirling the
mixture while adding Ge(OEt)4 to an aluminum perchlorate assembly with a
ratio of 2 of Al to Ge. A concentration of 0.25 mol L-1 of aluminum had to
be incorporated into the material to create a nanotube structure resembling a
quasi-double-walled tube. The NaOH solution at a concentration of 0.25 mol
L-1 was added in increments up until the [OH]/[Al] 2 ratio caused the solution to
hydrolyze. At this stage, the mixture had been baked in an oven at a temperature
of 95 degrees Celsius for a period of five days. Following the completion of the
maturation process, the suspension was dialyzed after being allowed to reach
room temperature naturally [49].
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3.3 Nanofiber-Based Colloidal Suspensions

Carbon nanotubes (CNTs) which lijima discovered in 1991, have attracted attention
due to their excellent electrical, mechanical, and thermal properties. Despite these
properties, the limited availability and high cost make it unlikely that CNTs will be
widely used shortly. On the other hand, vapor-grown carbon nanofibers (CNFs) with
typical spacings of 100-200 nm can be used to fabricate reinforced nanocomposites.
Nanofibers and nanotubes have comparable structural and physical properties, so
they can exhibit comparable general properties when used in composites. A look at
nanofibers can give hints for possible applications. In addition, C.N.F.s are attractive
candidates for reinforcement or conductive fillers because they can be manufac-
tured in large quantities at a reasonable cost. The extraordinary physical properties
make the application of these nanofibers on an industrial scale increasingly feasible
[50]. Numerous research projects have been carried out to develop phase change
materials (PCMs) for thermal energy storage and recovery. This is because PCMs
have a high energy storage density and only a small temperature difference between
the storage state and the recovery stage. Efforts have been made. The following
are some of the difficulties associated with using fatty acids and related eutectics
as additions in non-energetic phase change materials (NEPCMs), despite its use
to improve the properties of these materials: PCM leakage is caused by the mate-
rial’s low heat conductivity as well as its periodic solid-liquid phase shift (SLPC).
Particle entrapment with high thermal conductivity and reinforcement in materials
with permeable structures such as expanded graphite, perlite, activated attapulgite,
carbon nanotubes, and diatomaceous earth are only some of the ways that have
been investigated in order to boost thermal conductivity. It’s been done. Vermiculite
as support material [51]. Non-energetic phase change materials (NEPCMs) have
been modified by adding fatty acids and their eutectics to improve their properties.
However, it may have some drawbacks. Due to the SLPC, the thermal conductivity
and PCM leakage become low. Various methods have been used to improve thermal
conductivity, such as including high thermal conductivity particles and incorporating
porous structural materials such as expanded graphite, perlite, and carbon nanotubes,
diatomaceous earth, vermiculite as supporting components. approaches are consid-
ered. Also different types of fibers, such as random and brush types employed to
observe effect on thermal conductivities. The findings of the experiments indicate
that carbon nanofibers, also known as CNF, can be utilized to increase the effec-
tive thermal conductivity of the packed bed [52]. Carbon nanofibers, also known as
CNEF, are a type of nanofiber that has been utilized to enhance the thermal perfor-
mance of phase change materials, also known as PCMs. The thermal characteristics
of PCM are significantly enhanced with the incorporation of CNF. Increasing the
CNF mass fraction during the solidification process of the novel nanocomposites
results in faster cooling rates. The rate of heat transmission in the nano-range was
shown to rely on the surface area in comparative research because they scatter much
better within the matrix, carbon nanofibers (CNF) are a much more viable option
than carbon nanotubes (CNT) when it comes to using fillers to improve the thermal
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properties of a material [53].The temperature behavior and thermal conductivity of
PCM composites can be improved by using CNF as an addition. This can be done
without a reduction in the latent heat storage capacity of the composites [54].1t
has been looked into whether or not organic phase change materials (PCMs) can
benefit from the incorporation of nanoparticles in order to enhance their thermal
properties [55]. Graphite nanofibers with a weight distribution of 10% were found to
be capable of reducing discharge time by 61%, according to the findings of Sanushi
and colleagues, who embedded three different types of graphite nanofibers in paraffin
PCM. This means that if graphite nanofibers are used as an additive in PCM, they can
be used for thermal energy exchange applications, etc.. Studies have shown that the
heat flux across the nanoparticle interface can be significantly different between the
solid and liquid P.C.M. phases, and the contrasting bulk thermophysical properties of
HGNF/PCM nanocomposites. increase. It has been shown that nanoparticle dimen-
sionality can affect the heat transport between PCM and its embedded nanoparticles.
In addition, we have preliminarily measured the effects of HGNF considerations
on the latent heat and melting temperature of the combined mass. Because of this
work, our understanding of the tools that can be used to control the flow of heat
in PCM nanocomposites has evolved, as has the roadmap for applications in the
energy and electronics industries. The purpose of this research was to explore the
thermal conductivity, volumetric heat capacity, and thermal conductivity of organic
phase-change materials (PCMs) that were reinforced with particular volume frac-
tions of herringbone-patterned graphite nanofibers. According to the findings, the
thermal conductivity of HGNF/PCM nanocomposites appears to increase exponen-
tially within the solid phase, but not within the liquid stage until the nanoparticles
reach an extremely dense condition. This is because the solid phase contains more
nanoparticles. It was found that the volumetric heat capacity was at its highest during
the transition from solid to liquid and at its lowest within the liquid phase. On the
other hand, the thermal diffusivity in the liquid phase rose with a higher concentra-
tion of nanoparticles. This was something that had been identified. Near the melting
temperature, the latent heat of fusion was found to be less than one percent of the
standard PCM value for each nanocomposite, and it was found that the PCM value
was within 90 percent of the standard value. This suggested that the expansion of
the nanoparticles did not have any effect on the performance of the PCM in the
application [56]. Khodadadi et al. found that nanostructures can improve the thermal
conductivity of his PCMs and found that expansion of CNF and CNT into his PCMs
resulted in more pronounced thermal conductivity [57]. Furthermore, we found that
the degree of strengthening depends on the size, shape, and concentration of the metal
and metal oxide nanoparticles. In any case, we observed that the dynamic viscosity
decreased with increasing concentration of nanoparticles in PCM. This suggests that
certain measures should be taken to predict heat loss during phase change. CNF also
affects alignment and concentration. The z-oriented carbon nanofiber (CNF) rein-
forcements were observed to affect the thermal conductivity of the paraffin wax as a
whole, with the z-oriented thermal conductivity being higher than both the control and
non-oriented paraffin wax samples. Thermal conductivity increases with increasing
CNF concentration. In the future, this demand may provide guidance for creating
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tunable heat storage systems that appear to increase thermal conductivity during
charge and discharge cycles. Furthermore, the z-alignment process could provide
the desired thermal conductivity performance at a lower nanoparticle concentration,
allowing more space for the PCM and, thus, more energy storage per unit volume
[58].

When two different-length SCF stacks were stretched in an array of erythritol-
based PCCs where the erythritol matrix and SCF filler are practically physically
combined, a linear drop in enthalpy was observed. The largest temperature change
was 3.2 °C. Both thermal conductivity and phase change enthalpy should be consid-
ered when selecting phase change composites, as SCF/erythritol PCC demonstrated
excellent performance in temperature regulation property tests. To investigate the
effect of filler form on thermal conductivity, the thermal resistance and percolation
hypotheses were applied. Higher thermal conductivity and longer SCF suggest higher
thermal conductivity. Furthermore, a linear decrease in enthalpy was observed when
stacking two different length SCFs was extended to an array of erythritol-based His
PCCs in which the matrix and SCF filler were simply physically combined [59].

4 Conclusions

This chapter has focused on NEPCMs, preparation methods, nanostructure-based
classification and their applications in quite different fields. A conclusion can be
drawn from this chapter.

When determining PCM or NEPCM, several factors are taken into account,
including phase change temperature, thermal conductivity, latent heat, thermal diffu-
sivity, volume change, supercooling effects, cost, safety, and density boost. PCMs
have low thermal conductivity but can be increased by mixing nanostructure mate-
rials like nanotubes, nanoparticles, nanofibers, etc. The proper selection of PCMs
and nanostructures is critical to the stability of NEPCM. The thermal conductivity
of nano-enhanced PCM increases as the concentration of nanomaterials increases.
Surfactants are included to stabilize the surface and ensure even spreading. The
concentration, kind, and form of the nanomaterials all play a role in determining
the thermal conductivity of NEPCM. The PCM density increases with increasing
nanoparticle concentration. The swelling of nanoparticles within the liquid PCM
disrupts the liquid flow and increases its viscosity. The NEPCM is employed for
thermal management as well as thermal energy storage. Especially suitable for photo-
voltaic energy devices such as photovoltaic walls, photovoltaic stations, photovoltaic
stoves, photovoltaic dryers, and solar heaters.
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Chapter 6 M)
Theoretical Analysis and Correlations Cresiie
for Predicting Properties and Evaluation

Methods for NePCMs

Mathew George and Reji Kumar Rajamony

1 Introduction

1.1 Why Prediction and Theoretical Models?

The prediction models allow to conduct numerical simulation, with nanoparticle
concentrations that would not have been possible experimentally. However, to
generate a predictive model it is important to understand the assumptions carried
by the model [1, 2].

Theoretical models offer a foundation for understanding the behaviour of nano-
enhanced phase change materials (NePCMs) during phase change processes. This
understanding may then be used to make predictions. Researchers are able to make
predictions and conduct analyses about the thermal properties, heat transport charac-
teristics, and energy storage capacities of NePCMs by doing research on the under-
lying principles and mechanisms. This information is essential for building systems
that make use of NePCMs in a way that is both efficient and dependable [3].

The optimisation and design of NePCM is a very important factor for thermal
energy storage applications, this can be predicted by theoretical models. Many of
the researchers are able to investigate the compositions, operating conditions of
various phase change materials (PCMs) with different nanoparticles are analysed by
theoretical model with computational simulations. These simulations enhance the
performance of the NePCMs. The simulations techniques are more cost-effective
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